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Abstract

While economists have focused on the effect of mean temperatures on mortality, cli-

mate scientists have emphasized that global warming might not only lead to an increase

in mean temperatures, but can potentially also affect temperature variability. This is

the first paper to estimate the causal effect of temperature variability on mortality.

Using monthly state level data for the US in the period 1969-2004, I offer three main

results: (1) Increased monthly temperature variation causes increased mortality, (2)

omitting the effect of temperature variability on mortality can severely bias our predic-

tions on the number of temperature-induced fatalities caused by global warming, and

(3) adaptation to increased temperature variability is more difficult than adaptation to

increased mean temperatures.
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1 Introduction

This past decade has been the warmest one ever on record with almost every year being

warmer than the previous one (WMO, 2019). However, human-induced climate change, also

known as global warming, is not only causing an increase in the global mean temperature,

but it is also causing an increase in the probability and severity of extreme heat events

(Coumou and Rahmstorf, 2012). The start of this century has been unprecedented in terms

of extreme weather events, with many recent extreme heat events being far outside of the

previous temperature distribution. As a case in point, in 2003, large parts of Europe was

struck by a heat wave so severe that it is believed to have led to more than 70,000 premature

deaths (Robine et al., 2008). Despite an only modest increase in the mean temperature above

pre-industrial levels at the time, temperatures during the heat wave beat the previous record

by 3 ◦C (Schär et al., 2004). Furthermore, in just a decade there was a tenfold increase in

the probability of experiencing another heat event as severe as the one in 2003 (Christidis,

Jones, and Stott, 2015). This dramatic increase in the probability and severity of extreme

heat events has led climate scientists to question whether global warming is leading to a

simple increase in mean temperatures, or whether it is also affecting temperature variability.

While it has been established with a high degree of certainty that global warming will cause

increased mean temperatures (IPCC, 2014), there is less certainty regarding the effect of

global warming on temperature variability. This is, however, a question of increasing concern

and research among climate scientists (Klavans et al., 2017).

I investigate the effect of temperature variability on mortality by exploiting the

plausibly random variation in daily temperatures to identify the effect of being exposed to

more variation in daily temperatures, while controlling for exposure to days with extreme
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temperatures. Using a within-state identification strategy as in Barreca et al. (2016), I es-

timate the effect of monthly temperature variability on mortality for the US in the period

1969-2004. I offer three main findings. First, over my sample period I find that a 1 ◦C increase

in the monthly standard deviation of daily mean temperatures causes an additional 0.223

deaths per 100,000 people. The magnitude of this effect is comparable to that of experiencing

an additional day during the month with the mean temperature above 31.5 ◦C. Second, I

show in a simple prediction exercise how omitting the effect of temperature variability from

the temperature-mortality relationship can severely bias our predictions on the number of

temperature-induced fatalities caused by global warming. Third, I find that adaptation to

increased temperature variability is more difficult than adaptation to increased mean tem-

peratures. Although there are technologies that can protect against exposure to harmful

temperatures, e.g. air-conditioning, these technologies can be costly, causing only limited

adaptation to harmful temperatures, even in rich, developed countries (Barreca et al., 2015).

I find that while residential air-conditioning fully removes the harmful impact of exposure to

high temperatures, it provides only partial protection against temperature variation. Previ-

ous studies have also shown how the harmful impact of exposure to extreme temperatures

on mortality declines as a result of people becoming richer and more accustomed to the

higher temperatures caused by global warming (Barreca et al., 2016, Carleton et al., 2018).

I find that higher income and mean temperatures have little effect on the harmful impact of

monthly temperature variability on mortality.

There is a large economic literature concerned with estimating the costs associated

with global warming. While a changing climate with higher mean temperatures will affect the

economy and society through many different channels, e.g. agriculture, crime, coastal storms,

energy use and labour productivity (Hsiang et al., 2017), the largest cost of global warming

has been found to be caused by the effect of increasing temperatures on human mortality.

Thus, an important topic in this literature is the estimation of the temperature-mortality

relationship, with the goal often being to predict the effect of future climate change on
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mortality (e.g. Carleton et al., 2018). Previous papers have found exposure to extreme mean

temperatures to increase mortality (Deschênes and Moretti, 2009, Deschênes and Greenstone,

2011, Barreca, 2012), with the effect of temperatures on mortality tending to be larger in

developing countries (Burgess et al., 2017).

This paper makes two main contributions to this literature. First, although the

effect of temperature variability on mortality has received some attention in the epidemiology

literature (e.g. Zanobetti et al., 2012, Shi et al., 2015),1 by using recent innovations from the

new climate-economy literature (Dell, Jones, and Olken, 2014), this is the first paper to offer

evidence on the causal impact of temperature variability on mortality. Second, this paper

contributes to the literature by bringing together the economic research on the temperature-

mortality relationship with current research in the climate sciences. Although papers on

the temperature-mortality relationship has relied on the random variation in temperatures

over time for identification, they have not estimated the effect of temperature variation itself

on mortality. There has so far been little concern among economists about the economic

and social impact of temperature variability, whereas climate scientists, on the other hand,

are becoming increasingly concerned about the effect of global warming on temperature

variability. While the effect of exposure to extreme mean temperatures on human health has

received considerable attention, temperature variability also matters by affecting the marginal

utility of investing in adaptation. The marginal utility from investing in e.g. air-conditioning

is higher for people living in hot places who will benefit from their air-conditioning all year

round, compared to people living in places exposed to both cold and hot days who will only

benefit from air-conditioning part of the time.

This paper relates to an emerging literature concerned with estimating the eco-

nomic and social impacts of global warming caused by other factors besides that of mean

warming. For instance, Fishman (2016) estimates the impact of the temporal distribution of

1The epidemology literature is very different from the economic literature. In the epidemiology literature,
the papers tend to be correlation analysis, analysing the survival probability of individuals, often from a sub-
population (e.g. people with a chronic illness). The external validity of these studies is thus limited.
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precipitation on crop yields, and finds that a more uneven distribution of precipitation (i.e.

fewer rainy days) can overturn the benefits of higher precipitation caused by global warming

on crop yields, while Barreca (2012) finds that global warming can affect mortality by also

causing a change in humidity levels. This literature demonstrates that in order to estimate

the true social cost of carbon, it is important to consider the many other consequences of

global warming besides mean warming.

The rest of the paper proceeds as follows. Section 2 provides a review of the liter-

ature on the effect of global warming on temperature variability. Section 3 expands upon a

Becker-Grossman style model in order to provide a conceptual framework for why tempera-

ture variability matters for human health. Section 4 explains the data used for estimation and

the strategy for estimating the relationship between temperature variability and mortality.

In section 5, the estimation results from the benchmark analysis are presented, and a simple

prediction exercise on the number of temperature-induced fatalities by the end of the cen-

tury is offered. Section 6 takes a closer look at adaptation to temperature variability, while

section 7 investigates robustness and heterogeneity in the estimated impact of temperature

variability on mortality. Section 8 concludes.

2 Global warming and temperature variability

Figure 1 illustrates the difference between an increase in mean temperatures and an increase

in temperature variability, caused by global warming. Temperature variability is here un-

derstood as the variance of the temperature probability distribution. The increase in the

temperature variance has two effects: first, people will now be exposed to more days in

the hot tail of the temperature probability distribution, and secondly, they will also be ex-

posed to a wider range of temperatures over a given period of time. Previous studies on

the temperature-mortality relationship that have predicted the effect of global warming on

mortality (e.g. Carleton et al., 2018) have captured this first effect of an increase in the tem-
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perature variance, namely increased exposure to hot days, but they have not captured the

second effect of being exposed to a wider range of temperatures in itself.

[Figure 1 here.]

Climate scientists have argued that many of the recent extreme temperature events

have been too far outside of normal temperature ranges for a simple mean-shift in the tem-

perature probability distribution to explain these events (e.g. Coumou and Rahmstorf, 2012,

Horton et al., 2016). While climate scientists have traditionally focused their efforts on de-

livering credible projections of the effect of climate change on mean temperatures, the effect

of climate change on temperature variability is gaining increased attention among climate

scientists (Klavans et al., 2017). One part of the literature has investigated whether global

warming has affected current temperature variability.2 However, the climate is driven by

strongly nonlinear processes, thus, past changes in temperature variability are not neces-

sarily indicative of future changes. In order to say something about future temperature

variability, projections from global climate models (GCMs) are needed.

There are several theoretical reasons for believing that global warming will affect

the variability of temperatures. First, there is the potential land-atmosphere feedback of heat

events caused by anomalously low soil moisture; if soil moisture reaches low levels, maximum

surface temperatures are less likely to be moderated through evaporative cooling (Clark,

Brown, and Murphy, 2006, Coumou and Rahmstorf, 2012, Horton et al., 2016). Secondly,

global warming has a larger effect on night-time cooling than day-time heating. Both model

simulations and empirical analysis have shown large reductions in nocturnal cooling caused

by global warming (e.g. Donat and Alexander, 2012, Kharin et al., 2013), and it has been

2Climate scientists have used empirical methods to investigate whether the increase in temperatures above
pre-industrial levels experienced so far has had an effect on temperature variability (Della-Marta et al., 2007,
Wergen and Krug, 2010, Donat and Alexander, 2012, Hansen, Sato, and Ruedy, 2012). However, the results
from this empirical literature is largely inconclusive. In addition, even though a place has experienced an
increase (decrease) in the temperature variability so far, it does not necessarily imply that it will continue to
experience increased (decreased) temperature variability in the future under additional warming.
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shown that reduced nocturnal cooling has a disproportionally large effect on the occurrence

and severity of heatwaves (Clark, Brown, and Murphy, 2006). A third reason is the effect

of global warming on the atmospheric circulation patterns associated with heatwaves and

cold spells (Meehl and Tebaldi, 2004, Sillmann et al., 2011), which can potentially cause an

increase in the frequency of blocking situations.3 Fourth, the Arctic amplification of global

warming, as well as different warming rates on land than at sea, are both causing winds

blowing anomalous temperatures downstream, in turn causing an increase in the occurrence

of unusual temperatures (Scaife et al., 2008, Holmes et al., 2016). In addition, the Arctic

sea ice loss can also influence temperature variability through a weakening of the Atlantic

Thermohaline Circulation, which will reduce the oceanic fluxes of heat to high-latitude areas

(Budikova, 2009).

Studies using GCMs tend to find an effect of global warming future temperature

variability (see Holmes et al. (2016) for a review). There is usually a lot of spatial heterogene-

ity in the effect of global warming on temperature variability, with some regions projected to

experience increased temperature variability, while other regions are projected to experience

a decrease. In addition, there is a seasonal component in the effect of global warming on

temperature variability, with many regions projected to experience an increase in temper-

ature variability in summers and a decrease during winters (Weisheimer and Palmer, 2005,

Schneider, Bischoff, and P lotka, 2015, Sillmann et al., 2011).4 The early study of Zwiers and

Kharin (1998) found that a doubling of CO2 would cause a reduction in daily minimum and

maximum temperature variability in most parts of the world, with the largest reduction in

daily minimum temperatures, thus causing an increase in diurnal temperature variability.

Hegerl et al. (2004) find that for large portions of the world, projected changes in temper-

3A blocking situation is when the jet stream is characterized by a strong meandering pattern that remains
locked in place for a prolonged amount of time; this in turn decreases the weather variability, allowing
heatwaves or cold spells the time to build up (Coumou and Rahmstorf, 2012, Horton et al., 2016).

4Poppick et al. (2016), however, show how seemingly innocent choices regarding model resolution and
timescales can have a large effect on the projected changes in temperature variability. This is caused by
different timescales and model resolutions highlighting different physical processes and sources of temperature
variability.
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ature extremes differ substantially from projected increases in seasonal mean temperatures.

For the US, both the coldest and warmest day during the year warm faster than the sea-

sonal mean temperatures. Ballester, Giorgi, and Rodó (2010) and Fischer and Schär (2010)

find increased variation in daily mean temperatures for most of Europe. Clark, Brown, and

Murphy (2006) find a substantial increase in both intra-annual and interannual temperature

variability in Europe, parts of North and South America, and Eastern Asia.

In conclusion, there is a large literature on the effect of global warming on tem-

perature variability that so far has gone largely unnoticed by economists. While economic

research has highlighted the effect of exposure to low and high temperatures on mortality,

we have omitted to consider the separate effect of variation in temperatures on mortality.

The climate sciences, on the other hand, have grown increasingly concerned about the effect

of global warming on temperature variability. Although model projections are showing an

effect of global warming on temperature variability in many parts of the world, GCMs are

not yet tailored for analysing the effect of global warming on second-order moments of the

temperature probability distribution such as the variance, seeing as GCMs lack many of the

driving processes of extreme weather events (Fischer and Knutti, 2015, Poppick et al., 2016).

Nevertheless, improving GCMs in order to deliver credible projections on the effect of global

warming on future temperature variability is an active and growing area of research among

climate scientists.

3 Conceptual framework

This section formalizes the relationship between temperature variability and mortality by

expanding the Becker-Grossman style model of health production in Deschênes and Green-

stone (2011). The conceptual framework is a simple one-period model where a representative

agent jointly decides the optimal consumption of an aggregated consumption good, xC , and
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the survival rate, s. The agent maximizes the utility function,

U = U [xC , s] (1)

with the mortality risk being a function of investment in health, xH , the mean temperature,

µT , and the temperature standard deviation, σT . The production function for survival is

given by,

s = s(xH , µ
T , σT ) (2)

where it is assumed that ∂s/∂xH > 0, ∂s/∂µT < 05 and ∂s/∂σT < 0.

There is a clear link between exposure to extreme temperatures and mortality (for

a review, see USGCRP (2016)). Temperatures affect human health directly by affecting

the body’s ability to regulate internal temperatures, causing heat stress on hot days and

hypothermia on cold days. Extreme temperatures can also worsen existing conditions, such

as cardiovascular and respiratory diseases. However, for the agents in the model, variation

in temperatures also matters. More variation in temperatures around the mean means that

agents must invest in technologies protecting against a wider range of temperatures. For a

certain temperature variability it might be sufficient to invest in home insulation to protect

against exposure to harmful temperatures. However, an increase in temperature variability

might expose the agent to harmfully high temperatures as well, in which case home insulation

offers little protection, and technologies such as air-conditioning is needed instead. Thus, for

the given level of investment in health, i.e. home insulation, the mortality risk of exposure

to temperatures increases. The critical point is that while agents living in a hot place will

benefit from e.g. air-conditioning all year round, agents living in places exposed to both

cool and hot weather will only benefit from air-conditioning part of the time. An increase in

temperature variability will therefore reduce the marginal utility of investing in adaptation

5The assumption that an increase in the mean temperature is always negative for the survival rate is a
simplification. In reality, places with a low initial mean temperature could experience a decrease in mortality
from an increase in temperatures (see e.g. Carleton et al., 2018).
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to temperatures.6

Given income, I, and price, p, on investment in health, the agent faces the following

budget constraint,

I − xC − pxH = 0 (3)

with the aggregated consumption good as the numeraire good. The agent maximizes utility

with respect to xC and xH subject to equations (2) and (3). In equilibrium, the ratio of the

marginal utility of consumption of xC and xH must be equal to the price ratio,

(∂U/∂s)(∂s/∂xH)

∂U/∂xC
= p

For a fixed price ratio, the indirect utility function can be expressed as V (I, µT , σT ).

Consider an increase in the temperature standard deviation, σT , holding income and mean

temperature fixed. Since ∂V
∂σT ≡ ∂U

∂σT = ∂U
∂s

∂s
∂σT < 0, an increase in σT will, ceteris paribus,

cause a decrease in utility. While the maximum survival rate attainable by the agent used

to be s0(I/p, µ
T , σT0 ), for the higher level of σT the maximum survival rate attainable is now

s1(I/p, µ
T , σT1 ). The maximum consumption level of xC , however, remains unaffected by

the increase in σT . Figure 2 illustrates this change in the budget restriction caused by the

increase in σT .

[Figure 2 here]

There are two effects from the increase in the temperature standard deviation.

First, there is an income effect. A higher σT means a reduction in the marginal utility of

investing in health goods (e.g. while air-conditioning used to offer protection all year round,

the increase in the temperature standard deviation means that it offers protection only parts

6An additional explanation offered by the epidemiology literature is physiological acclimatization. Hu-
mans can adjust to changes in temperature, however, this is a process that requires time (Hanna and Tait,
2015). While acclimatization to new temperatures requires active and regular exposure to such temperatures
over an extended period of time, increased temperature variability reduces the time allowed for acclimatiza-
tion, thus increasing the harmful effect of temperatures on human health.
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of the time). In other words, in order to maintain the same survival rate, more investment

in health is needed. In addition, there is a substitution effect. Increasing the survival rate

is now relatively more expensive compared to the consumption good. Agents will respond

by increasing their consumption of xC by reducing their survival rate. While the income

and substitution effects pull in different directions for xC , causing an ambiguous effect on

consumption of xC , they pull in the same direction for the survival rate, namely a reduced

survival rate. For fixed income and prices, the agent is now on a lower indifference curve,

and although the effect on xC (and xH) remains ambiguous, we know with certainty that the

agent now faces a higher mortality risk.

4 Data and method

4.1 Mortality and weather data

The mortality data used in this paper is obtained from the Multiple Cause-of-Death (MCOD)

files published by the National Center for Health Statistics (2018). By extracting information

from death certificates filed, the MCOD files contain information about all deaths occuring

on US territories. Mortality rates are constructed by combining the death counts with popu-

lation estimates from the National Cancer Institute (2019). Using the MCOD files, a monthly

mortality rate is constructed for each state in the contiguous US (i.e. the 48 adjoining US

states, plus District of Columbia), with the mortality rate defined as the number of deaths

occurring in a state in a month per 100,000 people.7

Data on weather is extracted from the Global Historical Climate Network daily

(GHCN-daily) database, which is maintained by the National Oceanic and Atmospheric

Administration (Menne et al., 2012).8 The GHCN-daily database contains daily summaries

7The data is compiled on the state level because of a policy change that made county information in the
public use mortality data unavailable after 1988 for counties with a population below 100,000.

8Data is extracted from version 3.25 of the GHCN-daily database.
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from a selection of land surface stations in countries all around the world with each station

subjected to a common set of quality assurance checks. The variables of interest in the daily

summaries from the stations are the daily maximum temperature, minimum temperature

and precipitation. The database contains in total 59,928 weather stations in the contiguous

US. However, in order to reduce the measurement bias from stations going online and offline

(Auffhammer et al., 2013), data is extracted only from stations that report a daily summary

for the variable of interest for each day within a year. If a station does not fulfill this criterion,

then all observations from that station in that year are dropped from the sample.9

Two types of temperature variables are constructed: the monthly temperature stan-

dard deviation and the monthly mean temperature. The monthly temperature standard de-

viation is defined as the standard deviation of daily mean temperatures within a month, with

the daily mean temperature calculated as the average of the daily maximum and minimum

temperature. This variable corresponds to the parameter σT in the conceptual framework

presented in the previous section.10 The monthly mean temperature is constructed by first

taking the average of the daily maximum and minimum temperature and then counting the

number of days in a month with the daily mean temperature within a certain temperature

range, also known as temperature bins. In the benchmark analysis, I use the three critical

temperature ranges defined in Barreca et al. (2016): < 4.5 ◦C, 26.5− 31.5 ◦C, and > 31.5 ◦C.

A day with the mean temperature below 4.5 ◦C, between 26.5 and 31.5 ◦C, and above 31.5 ◦C

are henceforth referred to as a cold, warm and hot day, respectively. The reference category is

the number of normal days in a month, defined as days with the mean temperature between

4.5 and 26.5 ◦C.11 In addition, precipitation is measured as a second order polynomial in the

9On average, there were 2,967 stations that fulfilled this requirement in any given year.
10In section 7, I check the robustness of my benchmark analysis to different measures of the monthly

temperature variation.
11Defining the monthly mean temperature in this way, as opposed to e.g. the mean temperature across

all days within the month, allows for a more flexible functional form estimation. In section 7, I check the
robustness of my benchmark analysis to an increase in the number of temperature bins and to measuring the
mean temperature as a fourth order polynomial function.
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monthly sum of daily accumulated precipitation.12

All temperature and precipitation variables are measured at the station level. County

level temperature and precipitation variables are then calculated as a weighted average of

observations from all weather stations within a 300 km radius of the county centroid. The

weight given is the inverse of the squared distance between the station and the centroid,

hence giving closer stations a higher weight. The weather variables are then aggregated up

to the state level by taking a population-weighted average across all counties within the

state.13 The final data set contains observations on the mortality rate, temperature standard

deviation, number of cold, warm and hot days, and accumulated precipitation, for each state

in each month in the contiguous US. The analysis in this paper is restricted to the period

1969-2004 since this is the period with both population and mortality data available.14

4.2 Summary statistics

Table 1 shows summary statistics for the mortality rate and temperature variables on the

national level and for the different climate regions of the US over the sample period 1969-

2004. All averages in the table are population-weighted and can therefore be interpreted as

the exposure to extreme temperatures and temperature variability for the average American.

Column (1) shows the average monthly temperature standard deviation, σT . The average

American was exposed to a monthly σT of 3.9 ◦C. Columns (2)-(4) show the average annual

number of cold, warm and hot days, respectively. Over the sample period, the average

12The precipitation variable is constructed by first calculating the second order polynomial for each day
at the station level. The polynomial is then aggregated up to the state level (see the text for details), at
which point the daily precipitation polynomial is summed across all days in a month. Under the assumption
that weather events are additive, this transformation of the precipitation variable up to the state-month level
preserves the nonlinear relationship between mortality and precipitation that occurs on the station-day level
(Hsiang, 2016)

13This is the same procedure followed in Barreca et al. (2016), which also uses US data on the state-month
level.

14Population counts are available from 1969 and onwards, while 2004 is the last year where the MCOD
files contained information on the state where the death occurred. After 2004, this information was no longer
made available to the public.
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American experienced 74 cold days, 26.2 warm days and 1.7 hot days during the year, thus,

the average American was exposed to far more cold days than hot ones during the year.

Column (5) shows that the average annual mortality rate was 874.4 deaths per 100,000

people for the US over the sample period.

[Table 1 here]

There is, however, substantial variation in exposure to temperature variability and

days with extreme temperatures across the climate regions of the US.15 While people in the

West were exposed to an average monthly σT of only 2.8 ◦C, people in West North Central

were on average exposed to a monthly σT of almost 5 ◦C. All climate regions were on average

exposed to cold days during the year, with people in the Northern and Eastern part of the

US exposed on average to more than 100 such days during the year, and even in the West,

people were on average exposed to at least 11 cold days during the year. When it comes to

hot days, on the other hand, most people rarely experienced a hot day during the year, with

the notable exception of people in the Southwest who were on average exposed to 13.4 such

days during the year.

[Figure 3 here]

In addition to the variation in the monthly σT across the climate regions of the US,

there is also substantial variation in the monthly σT across the seasons of the year. Panel

(a) and (b) in Figure 3 show the average monthly σT experienced by states over the sample

period for summer and winter months, respectively.16 The figure shows that the monthly

σT is higher during winter months than during summer months in all states, however, the

difference in the monthly σT between winter and summers is generally low for states in the

Western part of the US. The pattern of spatial heterogeneity also differs between the seasons,

15For the definition of the nine climate regions of the US, see note below Table 1.
16Summer months are defined as June, July and August, while winter months are December, January and

February.
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with the states experiencing the lowest σT found in the South during summers and in the

West during winters. The lowest σT during summers is found in Florida with an average

monthly σT of only 1.1 ◦C, while the highest σT during summers is found in South Dakota

with an average monthly σT of 3.4 ◦C. The highest σT during winters is found in North

Dakota with an average monthly σT of 6.8 ◦C, while the lowest σT during winters is found in

California with an average monthly σT of only 2.7 ◦C.

4.3 Estimation strategy

I estimate the causal effect of monthly temperature variability on mortality by exploiting the

monthly variation in temperatures and mortality within states over time, following e.g. Bar-

reca et al. (2016). The main specification of the relationship between temperature variability

and mortality is given by the following equation,

ysym = γσTsym +
∑
j

θjTBIN j
sym + Xsymβ + αsm + ρym + εsym (4)

where ysym is the monthly mortality rate in state s, year y and month m. The variable

of interest is σTsym, which is the monthly temperature standard deviation. TBIN j
sym is the

number of days in a month with the mean temperature within a certain temperature range,

j. The number of temperature bins has been restricted to three critical temperature ranges

(and one reference temperature range) defined above as the number of cold, warm and hot

days experienced by people in a state during the month.

Naively estimating the effect of temperature variables on mortality will lead to

biased estimation, seeing as both temperatures and mortality are correlated with other con-

founding factors such as e.g. income (hotter states tend to be poorer, and poorer states tend

to have a higher mortality rate). To avoid this confounding, I employ two strategies. First,

I include a rich set of fixed effects, namely a state-by-month fixed effect, αsm, and a year-by-

month fixed effect, ρym. The state-by-month fixed effect is included to absorb unobserved but
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permanent differences in the mortality rate between states, while allowing for state-specific

characteristics in the mortality rate across the months of the year. The year-by-month fixed

effect captures the pattern of seasonality in the mortality rate, as well as absorbing time

shocks that are common to all states. Secondly, I include a vector of control variables, Xsym,

which contains a second order polynomial in the monthly accumulated precipitation, the

share of state population in four age categories, and the log of per capita income.17 The

age shares and log of per capita income are interacted with month indicator in order to cap-

ture age- and income-specific seasonality effects that are common across states. The vector

also contains a quadratic time trend that is interacted with the state-month identifier, thus

allowing each state its own trend in seasonal mortality rates.

By including these fixed effects and control variables, the model is isolating the

deviations in temperatures over time from their state-month specific means, while removing

the effect of common time shocks and controlling for a time trend in the state-month specific

means. The idea is that while each state has a month-specific temperature probability dis-

tribution, and this distribution is correlated with other confounding factors, each state will

over time experience random fluctuations around their month-specific mean caused by the

stochastic nature of temperatures. The temperature-mortality relationship is thus identified

by the presumably exogenous variation over time in temperatures caused by random draws

from the location-specific temperature probability distribution. The only remaining threat

to identification is the omission of any time-varying variables that are correlated with both

mortality and temperatures, and that are not captured by the quadratic time trend.

17The four age groups are: < 1 year, 1-44 years, 45-64 years, and > 64 years. They are constructed by
using population counts from the National Cancer Institute (2019). The per capita income is extracted from
the Bureau of Economic Analysis (2019).
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5 The temperature-mortality relationship

5.1 Mean temperatures and temperature variability

Results from estimation of equation (4) are shown in Table 2.18 Column (1) is the naive

estimation of the temperature-mortality relationship, which leads to an overestimation of the

effect of temperature variability on mortality. This is largely corrected for by including the

state-month fixed effect in column (2). Adding the year-month fixed effect in column (3)

and the vector of control variables in column (4) cause only small additional decreases in

the impact of the monthly σT on mortality. Column (4) shows that the monthly σT has a

positive and statistically significant effect on mortality, with an increase in the monthly σT

by 1 ◦C causing an additional 0.269 deaths per 100,000 people in a state.

[Table 2 here]

Column (5) shows the results from estimating the temperature-mortality relation-

ship investigated previously by the literature, namely the effect of exposure to extreme mean

temperatures on mortality. In column (5), an additional cold day during the month causes an

additional 0.167 deaths per 100,000, while an additional hot day during the month causes an

additional 0.266 deaths per 100,000 people. The magnitude of these estimates are in line with

previous studies, which have found a positive and statistically significant effect of exposure

to days with both a high and low mean temperature on mortality (e.g. Barreca et al., 2016,

Karlsson and Ziebarth, 2018).

A potential threat to identification of the models in columns (4) and (5) is the

confounding of the effect of exposure to increased temperature variability with the effect

of exposure to days with an extreme mean temperature. Since an increase in the monthly

temperature standard deviation can cause an increase in the number of days in the tails of

18Since both temperatures and mortality are likely to be correlated over time within states, all regressions
cluster standard errors on the state-level. Arguably, there could also be some correlation across states within
the same year. The main results, however, are robust to two-way clustering on the state and year level.
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the temperature probability distribution, it can be argued that the impact of the monthly

σT on mortality found in column (4) is not driven by temperature variability per se, but

instead by the accompanying increase in the days with low and/or high mean temperatures.

Similarly, the effect of cold, warm and hot days on mortality found in column (5) could partly

be driven by increased σT , and not only by exposure to days in the tails themselves.

Column (6) in Table 2 tests for the potential confounding of these two effects by

simultaneously estimating the effects of exposure to extreme mean temperatures and tem-

perature variability on mortality. The impact on mortality of an additional cold, warm and

hot day remains largely unchanged, e.g. an additional hot day during the month causes an

additional 0.258 deaths per 100,000. Likewise, controlling for the exposure to extreme mean

temperatures (i.e. cold, warm and hot days) has little effect on the impact of the monthly

temperature standard deviation on mortality. Column (6) shows that a 1 ◦C increase in the

monthly σT causes an additional 0.223 deaths per 100,000 people, even when controlling for

the potential increase in the number of cold, warm and hot days. The marginal effect of σT

on mortality is thus comparable to the impact on mortality from experiencing an additional

hot day during the month, which previous studies on the temperature-mortality relation-

ship have focused on (e.g. Barreca et al., 2016). Since column (6) provides estimates of the

separate effects of temperature variability and exposure to extreme mean temperatures on

mortality, this is the preferred specification of the temperature-mortality relationship for the

remainder of the paper.19

5.2 Prediction exercise

Given the magnitude of the impact on mortality from exposure to increased temperature

variability, the existing literature on the temperature-mortality relationship has omitted an

important component of this relationship. The consequences of this omission is explored in

19In section 7, I investigate the robustness of my benchmark analysis to the functional form and measure
of monthly temperature variation chosen in the preferred specification.
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the following prediction exercise. Temperature projections for the end of the century are

collected from the Global Daily Downscaled Projections (GDDP) data created by NASA

Earth Exchange (Thrasher et al., 2012). The NEX-GDDP data is compiled from the General

Circulation Model runs conducted under the Coupled Model Intercomparison Project Phase

5, and it consists of high-resolution (0.25 ◦×0.25 ◦) bias-corrected climate projections from 21

different climate models throughout the year 2099. I collect temperature projections from all

of the models in the NEX-GDDP data for the RCP8.5 emission scenario, which corresponds

to a mean global surface warming of approximately 4−6 ◦C above pre-industrial levels by the

end of the century. I define global warming as the difference in the average annual number

of cold, warm and hot days for each state in the period 2070-2099 compared to the baseline

period 1969-2004.20,21

[Table 3 here]

Panel A in Table 3 shows a population-weighted average of the projected changes

in the number of cold, warm and hot days for the US as a whole.22 The NEX-GDDP data

projects that the average American will be exposed to 38.4 fewer cold days, 39.6 additional

warm days and 19.9 additional hot days each year by the end of the century. There is,

however, substantial variations across states in the projected changes in the number of cold,

warm and hot days (see Appendix C for state specific projections). Panel B in Table 3 shows

the mortality impacts of these projected changes in the number of cold, warm and hot days

20Daily mean temperatures at each grid point is calculated as the average across the 21 climate models
in the NEX-GDDP data. Daily mean temperatures are then aggregated up to the county level by taking the
average across all grid points that fall within a county. A population-weighted average is then taken across
all counties within a state. The population weights used is the share of US population in each county in
2004, which implies the assumption that the distribution of people in the US remains the same after 2004.
Global warming is then defined as the difference in the average annual number of cold, warm and hot days
between the periods 2070-2099 and 1969-2004.

21The final data set contains temperature projections for all areas in the sample used for estimation except
District of Colombia. Even though the NEX-GDDP data is of a high-resolution, there are no grid cells that
fall within the district.

22This is a weighted average of the difference in the number of cold, warm and hot days across all states,
using the average state population in the baseline period 1969-2004 as weights.
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using the estimates from the preferred specification in column (6) in Table 2. The decrease

in the number of cold days reduces mortality by 26,607 fewer deaths each year, while the

increases in the number of warm and hot days increase mortality by an additional 15,168

and 22,096 deaths each year, respectively. Using projected population counts from United

Nations (2017), these estimates take into account population growth in the US throughout

the century.23 The net effect is an increase in the number of temperature-induced fatalities

by approximately 10,500 each year. The increase, however, is not statistically significant.

Furthermore, since states do not experience uniform changes in the number of cold, warm

and hot days, this national estimate is masking large distributional effects between states

(see Appendix C for state specific mortality estimates).

[Figure 4 here]

While we have a good understanding of the effect of global warming on future mean

temperatures, the same cannot be said for the effect of global warming on temperature vari-

ability. As discussed in section 2, projecting the effect of global warming on temperature

variability is a growing and active area of research among climate scientists, however, pro-

jections from climate models are not yet tailored for capturing the effect of global warming

on second-order moments of the temperature probability distribution. Sidestepping this is-

sue, Figure 4 illustrates the additional effect on the number of temperature-induced fatalities

for hypothetical changes in the monthly temperature standard deviation by the end of the

century. Table 3 showed that under the assumption of no changes in the monthly σT , the

increase in mean temperatures will cause an increase in mortality by approximately 10,500

additional fatalities each year. Figure 4 shows that a 1 ◦C increase in the monthly σT will

cause a doubling in this predicted increase in the annual number of temperature-induced fa-

talities, while a 1 ◦C decrease will fully counteract the predicted increase in mortality caused

23According to these projected population counts, average population in the 48 adjoining US states in the
period 2070-2099 will be 430,371,246. However, the mortality predictions are based on the assumption of
constant distribution of people across states and age groups between the periods 1969-2004 and 2070-2099.
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by increased mean temperatures. Even for much smaller changes in the monthly tempera-

ture standard deviation there can be a substantial effect on predicted future mortality. If

the monthly σT were to increase by only 0.4 ◦C, that would still cause an additional 5,000

predicted fatalities each year, incidentally also making the predicted increase in the annual

number of temperature-induced fatalities by the end of the century statistically significant.

Figure 4 illustrates that even small changes in the monthly temperature standard deviation

can have a large impact on the predicted effect of global warming on mortality, thus high-

lighting the importance of improving climate models in order to deliver credible projections

on future temperature variability.

6 Adaptation to global warming

The temperature-mortality relationship estimated in the previous section is likely to overstate

the effect of global warming on mortality because it is estimated from unexpected temper-

ature shocks. In the future, as mean temperatures continue to increase, people are likely

to undertake adaptive measures to the new climate normal. Thus, estimation of equation

(4) is generally perceived of as an upper-bound on the mortality effect of global warming

(e.g. Carleton et al., 2018). Previous papers have investigated specific adaptation measures

in the temperature-mortality relationship, e.g. Deschênes and Greenstone (2011) and Bar-

reca (2012) have estimated the relationship between temperatures and residential energy

consumption, Barreca et al. (2016) has investigated the effect of residential air-conditioning

on the marginal effect of a hot day on mortality, while Deschênes and Moretti (2009) has

considered migration as an adaptation strategy.

It is conjectured that adaptation to extreme temperatures is a function of income

and mean temperatures (Carleton et al., 2018). The idea is that when people become richer,

they can take more steps to protect themselves against exposure to harmful temperatures

(e.g. buying air-conditioning). In addition, the literature has found a lower marginal effect of
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extreme temperatures on mortality in places that are frequently exposed to such temperatures

(Barreca et al., 2015, Karlsson and Ziebarth, 2018).24 This is because increased exposure to

extreme temperatures reduce the opportunity cost of investment in adaptation. In addition,

people living in hot places will be more adapted to such temperatures compared with people

living in cold places through both physiological acclimatization (Hanna and Tait, 2015) and

cultural adaptation to high temperatures (e.g. siestas).

In this section, I consider two tests of adaptation to temperature variability in the

temperature-mortality relationship. First, I investigate the process of adaptation along the

axes of income and mean temperatures, and second, I explore the effect of residential air-

conditioning on the marginal effect of the temperature variables. Given that the goal of

this analysis is to investigate heterogeneity in the temperature-mortality relationship along

different axes of adaptation, the following regression models are estimated without weights

(Solon, Haider, and Wooldridge, 2015). In addition, because of a lack of random variation in

income and residential air-conditioning rates within states over time, the adaptation analysis

cannot claim causality. Instead, it explores the correlation between the temperature variables

with income, mean temperatures and residential air-conditioning.

6.1 Mean income and temperature

In order to investigate the process of adaptation along the axes of mean income and tem-

perature, the model in equation (4) is expanded with interactions between the temperature

variables and the long-run means of state-level income and temperature. In equation (5), the

long-run mean income, log(incpc), and temperature, TMEAN , are measured as 10-year mov-

ing averages of annual log income per capita and annual mean of daily mean temperatures.25

24This could be because people living in warm places have adapted to the higher temperatures, or it could
be because there is a sorting of people with a high heat tolerance into warm places.

25By measuring the long-run means for each state as 10-year moving averages, as opposed to e.g. the
mean over the sample period, I allow the income distribution of US states to change over time. Given the
long sample period, states that were relatively poor in 1969 are not necessarily in the bottom of the income
distribution in 2004. While the distribution of states across mean temperatures remains constant over the
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Zsym contains the terms from the baseline model specified in equation (4).

ysym =Zsym + (δ0 + δ1σ
T
sym +

∑
j

δjTBIN j
sym)× (TMEANsy + log(incpc)sy) (5)

Table 4 reports the results from estimating the model in equation (5). In column (1),

the model is estimated with interactions between the temperature variables and mean income

only, while in column (2), the model is estimated with interactions between the temperature

variables and mean temperature only. Column (3) shows the estimates from estimating the

full model in equation (5). Although some of the coefficients on the interaction terms are

not statistically significant, the sign on the coefficients are all as expected.

[Table 4 here]

The coefficients on all of the interaction terms in column (1) are negative, implying

a decline in the marginal effects of the monthly σT and days with extreme mean temperature

on mortality as income increases. The same applies for the coefficients in column (2), with

the exception of the coefficient on the interaction between cold days and mean temperature.

Thus, a higher annual mean temperature is associated with a decrease in the marginal effects

of a warm and hot day on mortality, and an increase in the marginal effect of a cold day on

mortality. The same pattern is found in column (3) when the temperature-mortality rela-

tionship is allowed to develop as a function of income and mean temperature simultaneously.

While increased income is associated with a reduction in the harmful impact of the monthly

σT on mortality, increased annual mean temperature, on the other hand, seems to have little

effect on the harmful impact of monthly σT . Neither of the interaction terms, however, are

statistically significant.

Using the coefficients from column (3) in Table 4, Figure 5 illustrates the marginal

effects on mortality for each of the four temperature variables along the range of the long-run

sample period, there are in fact several states that went from being below (above) median income in 1969 to
above (below) median income in 2004.
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means of log per capita income and annual mean temperature observed in the sample period.

The figure shows that the lowest marginal effects of a warm and hot day on mortality are

found in the upper right corner, which corresponds to both income and mean temperature

being at their maximum values. The lowest marginal effect of a cold day on mortality, on the

other hand, is found in the upper left corner, corresponding to income and mean temperature

being at their maximum and minimum values, respectively. While the marginal effects of

a warm and hot day on mortality display substantial variation along the axes of income

and mean temperature, the marginal effect of the monthly σT displays substantially less

variation.26

[Figure 5 here]

As an example, Figure 5 indicates the location of Washington and Texas given their

mean income and temperature in 2004. While both states have a relatively high income per

capita, Texas has a significantly higher annual mean temperature than Washington. The

marginal effect of a 1 ◦C increase in the monthly σT is an additional 0.118 deaths per 100,000

people in Washington, compared to 0.033 in Texas. The marginal effect of experiencing

an additional hot day during the month is an additional 0.129 deaths per 100,000 people in

Washington, compared to -0.126 in Texas. Although the higher mean temperature in Texas is

associated with a decrease in the marginal effects of both the monthly temperature standard

deviation and a hot day, the decrease is more striking for the marginal effect of a hot day.

This supports the conclusions from the conceptual framework in section 3, which

showed that for a given level of income and mean temperature, increased temperature vari-

ability makes adaptation harder. Neither increased income nor increased mean temperature

is associated with a strong decrease in the marginal effect of the monthly σT on mortality.

This implies that adaptation to increased temperature variability is relatively more difficult

than adaptation to increased mean temperatures. Depending on the sign and magnitude of

26The range of the marginal effects for the temperature variables are: σT = [-0.024, 0.357], cold day =
[-0.028, 0.464], warm day = [-0.128, 0.425] and hot day = [-0.363, 1.263].
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the effect of global warming on future temperature variability, this difference in the ability

to adapt to increased temperature variability and increased mean temperatures can have

important implications for the effect of global warming on future mortality.27

6.2 Residential air-conditioning

In order to explore the effect of air-conditioning on adaptation to the monthly temperature

standard deviation, I estimate the following model,

ysym = Zsym + (φ0 + φ1σ
T
sym +

∑
j

φjTBIN j
sym)× ACsy (6)

where the temperature variables, σTsym and
∑

j TBIN
j
sym, are interacted with ACsy, which

is the share of households in state s and year y with air-conditioning. Data on the share of

households with air-conditioning over the sample period is taken from Barreca et al. (2016).

Again, Zsym contains the terms from the baseline model specified in equation (4).

[Table 5 here]

Table 5 reports the results from estimating the model in equation (6). Column (1)

shows the estimates from the baseline model in equation (4), while column (2) shows the

estimates from estimating the expanded model in equation (6). In line with the previous

literature, the harmful impacts of a warm and hot day on mortality decline when the share

of households with air-conditioning increases (Barreca et al., 2016). As expected, residential

air-conditioning has no effect on the marginal effect of a cold day on mortality. Although the

coefficient on the interaction between σT and the share of households with air-conditioning

is negative, the effect is small and statistically insignificant.

27In addition, if there is spatial heterogeneity in the effect of global warming on future temperature
variability, this can potentially have a large effect on the distribution of income across states.
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While air-conditioning was still quite rare for an American household in 1969, in

2004, a total of 29 states had achieved full coverage of residential air-conditioning. Using the

estimates from column (2), going from zero air-conditioning to full coverage among house-

holds in a state reduces the marginal effects on mortality of a warm and hot day by 97%

((−1.558/1.603)×100) and 101% ((−0.533/0.526)×100), respectively. The same increase in

residential air-conditioning, however, is associated with a decrease in the marginal effect of

the monthly σT on mortality by only 44% ((−0.116/0.265)× 100). In other words, while the

prevalence of air-conditioning can more or less remove the harmful impact on mortality from

exposure to days with high temperatures, it offers only limited protection against exposure

to increased temperature variability.

7 Robustness and additional heterogeneity

7.1 Functional form and measure of temperature variation

The preferred specification of column (6) in Table 2 aims at separating the effect of being

exposed to a wider range of temperatures during the month from the effect of being exposed to

days with extreme mean temperatures. In order to capture this latter effect of temperatures

on mortality it is imperative that the model properly controls for exposure to days in the tails

of the temperature probability distribution. I therefore re-estimate the model in equation

(4), but where the number of temperature bins have been expanded. Column (1) in Table

6 reports the estimate from a model where each temperature bin is 1 ◦C wide, starting at

−20 ◦C to +35 ◦C, while column (2) reports the estimate from a model where exposure to

days with extreme temperatures has been estimated through a fourth order polynomial in

the daily mean temperature.28 Although columns (1) and (2) show a slight decrease in the

28The fourth order polynomial in daily mean temperatures is calculated in the same way as the precipita-
tion variable: the polynomial is first calculated at the station-day level, and then aggregated up to the state
level where the daily polynomial is summed up across all days in a month. See footnote 12 for more details.
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impact of the monthly σT on mortality compared to the baseline estimate in column (6) in

Table 2, the confidence intervals from all three models overlap.

[Table 6 here]

Columns (3)-(5) in Table 6 investigate different functional forms on the effect of

the monthly temperature standard deviation on mortality. In column (3), the model has

been expanded by a quadratic term on the monthly σT . The quadratic term is negative and

statistically significant, implying a positive but decreasing marginal effect of the monthly

temperature standard deviation on mortality. This relationship is plotted in Figure 6. In

column (4), I investigate whether the effect of σT on mortality is different depending on

whether there is an increase in σT or a decrease.29 Given the lack of statistical significance

of the coefficient on the interaction between the monthly σT and the dummy for a negative

shock, it implies that an increase and decrease in monthly temperature variability does not

have a different effect on mortality.

Figure 3 showed that the monthly σT is on average higher during winter than

summer. It could be that the effect of monthly temperature variability on mortality is

lower when the natural temperature variation is higher. Column (5) tests this hypothesis by

estimating the model using only summer and winter months and by including an interaction

between the weather variables and a winter dummy. The marginal effect of the monthly σT on

mortality becomes almost three times as large during summer compared to the benchmark

analysis, while the coefficient on the interaction between the monthly σT and the winter

dummy is negative and statistically significant. This implies that temperature variability is

in fact more harmful during summer when natural variability is low, compared to winter.30

29This is done in a two-step regression. First, the temperature variables and mortality rate is regressed on
the fixed effects and control variables specified in equation (4). The residuals in the mortality rate are then
regressed on the residuals in the temperature variables. By including a dummy for whether the residuals in
the monthly σT are negative, and interacting it with the monthly σT , the model allows for a different effect
of a negative shock and a positive shock in σT . The standard errors in the second step are computed by
adjusting for the degrees of freedom lost in the first regressions.

30This could be important for predictions since global warming might affect summer and winter temper-
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[Figure 6 here]

In order to show that the results from my benchmark analysis are not driven by

the particular measure of monthly temperature variability adopted, columns (6)-(8) in Table

6 report the estimates from estimating the model in equation (4) using different measures

of monthly temperature variation. In columns (6) and (7), temperature variability is now

measured as the monthly standard deviation of daily maximum and minimum temperatures,

respectively, while in column (8), monthly temperature variability is measured as the differ-

ence between the highest and lowest daily mean temperature during the month. All measures

of monthly temperature variability have a positive and statistically significant effect on the

mortality rate.31

7.2 By age group and cause of death

In addition to the overall effect of temperatures on the all-age mortality rate, previous studies

have found substantial age group heterogeneity in the temperature-mortality relationship

(Barreca et al., 2016, Karlsson and Ziebarth, 2018).32 Panel A in Table 7 shows the estimates

from estimating the baseline model in equation (4) separately for four different age groups.33

The harmful impact of monthly σT on mortality is found mainly among those above the age

of 44, with the largest impact found among those above the age of 64. I estimate that a 1 ◦C

increase in the monthly σT causes an additional 1.494 deaths per 100,000 people above the

age of 64, which is substantially higher than the effect of σT on the all-age mortality rate

found in the benchmark analysis. In other words, the impact on mortality from exposure to

ature variability differently (Schneider, Bischoff, and P lotka, 2015).
31In addition, the estimated effects on mortality from being exposed to cold, warm and hot days (not

reported in the table) remain unchanged in all model specifications in columns (3)-(8), with the exception of
column (5).

32Barreca et al. (2016) and Karlsson and Ziebarth (2018) found that while cold days affect mortality
among infants and the elderly, warm and hot days mainly affect mortality among adults.

33I follow Barreca et al. (2016), and construct age-specific mortality rates for the following age groups: <
1 year, 1-44 years, 45-64 years, and > 64 years.
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days with extreme temperatures and to increased temperature variability during the month

are both driven mostly by their impact on the elderly.

[Table 7 here]

The literature has also found that exposure to extreme temperatures does not af-

fect all causes of deaths equally. Deschênes and Moretti (2009) found that the increase

in mortality following cold days was mainly caused by an increase in cardiovascular- and

respiratory-related fatalities, while Barreca (2012) and Karlsson and Ziebarth (2018) found

that hot days caused an increase in cardiovascular-related mortality. In order to investigate

heterogeneity in the effect of temperature variability on mortality, I estimate the baseline

model separately for different cause-specific mortality rates. The causes of deaths identified

are infectious diseases, neoplasms, mental disorders, diseases of the nervous system, respi-

ratory diseases, cardiovascular diseases and motor vehicle accidents.34 Panel B in Table 7

reports the estimates for the cause-specific mortality rates, and it shows that the harm-

ful impact of monthly σT on mortality is largely driven by its effect on respiratory- and

cardiovascular-related mortality.

In addition, Burke et al. (2018) found a higher suicide rate following warm tem-

perature shocks in Mexico. A similar effect is found in Table 7 with exposure to both hot

days and increased monthly σT affecting fatalities related to mental disorders. I also find

that exposure to increased monthly σT slightly increases mortality related to neoplasms and

diseases of the nervous system. Lastly, it is comforting to see that temperature variation

has no effect on fatalities caused by traffic accidents. Previous studies have found an ef-

fect of exposure to extreme temperatures on traffic accidents (e.g. Deschênes and Moretti,

2009). However, while there is a clear mechanism between days with extreme temperatures

34The ICD 9-codes used to define the causes of deaths are as following: infectious diseases = 1-139,
neoplasms = 140-239, mental disorders = 290-319, diseases of the nervous system = 320-389, cardiovascular
diseases = 390-459, respiratory diseases = 460-519, and motor vehicle accidents = E810-E819. While the
original sample period is 1969-2004, in regressions using the cause-specific mortality rates the sample period
is limited to 1969-1998 because of the introduction of a new classification system of diseases in 1999.

29



and traffic accidents, there is no clear mechanism between traffic accidents and temperature

variability.

[Table 6 here]

7.3 By time period and dynamic model

Table 8 investigates the robustness of the benchmark analysis to estimating the model for

different time periods and by including lagged exposure to the temperature variables. The

analysis of adaptation in the previous section showed that the marginal effects of the tem-

perature variables on mortality decrease as income increases. The preferred specification in

column (6) in Table 2 is estimated using the entire sample period 1969-2004. However, it

could be argued that the marginal effect of the monthly σT on mortality found in the bench-

mark analysis is driven by the effect of temperature variability on mortality in the beginning

of the sample period when income in the US was lower, and thus, people were more exposed

to the harmful impacts of temperatures. In order to investigate this hypothesis, I split the

sample period in three 12-year periods, and estimate equation (4) separately for each time

period.

[Table 8 here]

Panel A in Table 8 reports the estimates for the periods 1969-1980, 1981-1992 and

1993-2004. Previous studies have documented a decline in the marginal effect of exposure

to extreme temperatures on mortality in the US (e.g. Barreca et al., 2015). While panel A

confirms this sharp decline in the marginal effect of exposure to days with high temperatures

on mortality over the second half of the previous century, only a slight decline is found in the

marginal effect of the monthly σT on mortality. The impact of temperature variability on

mortality remains substantial over time, and by the end of the sample period a 1 ◦C increase

in the monthly σT still caused an additional 0.151 deaths per 100,000 people.
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Panel B in Table 8 investigates the presence of ”harvesting” in the effect of tem-

perature variability on mortality. Harvesting occurs when exposure to harmful temperatures

are not causing the deaths of otherwise healthy people, but instead expediting the deaths

of the very ill (Deschênes and Moretti, 2009). Thus, exposure to harmful temperatures is

not so much increasing mortality as causing a displacement of deaths in the near-future. In

order to investigate harvesting in the impact of the monthly σT on mortality, I transform the

baseline model in equation (4) to the following dynamic model,

ysym =
T∑
t=0

γtσ
T
sym−t +

T∑
t=0

∑
j

θjtTBIN
j
sym−t + Xsymβ + αsm + ρym + εsym (7)

which includes T number of lags on the temperature variables as explanatory variables. The

sum of the coefficients on the lags in the model gives the accumulated effect on mortality

from a shock in the temperature variables experienced T months ago. Estimates in Panel

B are the accumulated effects on mortality from exposure to a shock in the temperature

variables experienced up to six months ago.

Panel B confirms the finding from the literature that while the effect of exposure

to cold days on mortality is long-lasting, the harmful impact of warm and hot days is driven

mostly by near-term displacements in the mortality rate (e.g. Deschênes and Moretti, 2009,

Karlsson and Ziebarth, 2018). The impact of the monthly σT on mortality, however, shows

a much more persistent effect on mortality over time. The effect of a 1 ◦C increase in the

monthly σT remains almost the same after six months as the effect observed after only one

month. This implies that instead of causing a short-term displacement of deaths, an increase

in the monthly σT is causing the deaths of people that otherwise could have lived at least 6

months longer.
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8 Conclusion

This paper brings together the economic literature on the effect of global warming on

temperature-induced mortality with the climate science literature. While economists have

traditionally focused on the effect of mean temperatures on mortality, climate scientists have

emphasized the fact that global warming might not only affect mean temperatures, but can

also cause a change in future temperature variability as well. The relationship between expo-

sure to days with extreme temperatures and mortality is generally well-understood. However,

exposure to increased temperature variability also matters for human health and mortality

because increased variation around the mean temperature reduces the marginal utility of

investing in adaptation.

By combining US data for the period 1969-2004 with recent innovations from the

new climate-economy literature (Dell, Jones, and Olken, 2014), I demonstrate the deadly im-

pact of within-month variation in temperatures. More specifically, I find that a 1 ◦C increase

in the monthly standard deviation of daily mean temperatures causes an additional 0.223

deaths per 100,000 people in a state. This is comparable to the impact on mortality from

experiencing an additional day with the mean temperature above 31.5 ◦C. The literature on

the temperature-mortality relationship has emphasized the possibility of adaptation to higher

mean temperatures. I find, however, less evidence of adaptation to increased monthly tem-

perature variability than of adaptation to higher mean temperatures, e.g. while residential

air-conditioning fully protects against the harmful effect of days with high temperatures on

mortality, it offers only limited protection against increased monthly temperature variability.

In addition, higher income and mean temperatures have little effect on the harmful impact

of exposure to monthly temperature variability on mortality.

In a simple prediction exercise, I show how even small changes in the monthly

temperature standard deviation can have large impacts on the predicted number of future

temperature-induced fatalities. Given that we are currently lacking credible projections on
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the effect of global warming on future temperature variability, an important area for future

research is thus to improve climate models, enabling them to deliver credible projections on

second-order moments of the future temperature probability distribution. While this paper

has measured temperature variability as the within-month variation in daily mean temper-

atures, the climate sciences have pointed out that global warming can affect temperature

variability from the inter-annual to the diurnal level (e.g. Schär et al., 2004, Kharin et al.,

2013). Future research should therefore investigate the effect of different scales of tempera-

ture variability. In addition, while this paper has found an effect of temperature variability

on mortality, it is plausible that it could also affect other social and economic outcomes as

well, e.g. agriculture, making the investigation of the impact of temperature variability on

these other outcomes an important venue for future research.

Lastly, some climate scientists have argued that although global warming might

affect the temperature variability, this effect is only transitory as global temperatures are

moving from the old steady state to a new one (e.g. Huntingford et al., 2013). Regardless

of whether this is the case or not, reaching a new steady state in global temperatures is

a lengthy process. In the meantime, people will have to adapt to not only higher mean

temperatures, but potentially also to changes in the variability of temperatures. Depending

on both the sign and the magnitude of the changes in future temperature variability, this

paper has shown that there can be enormous consequences for human health and mortality

in the medium run.
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A Figures

Figure 1: Change in the temperature probability distribution for (a) an increase in the mean
temperature only, and for (b) an increase in the mean temperature and increased temperature
variance.
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Figure 2: Optimal allocation of income on the consumption good (xC) and survival rate (s)
given income (I), prices (p), mean temperature (µT ) and temperature standard deviation
(σT ).
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Figure 3: State-level average monthly temperature standard deviation (σT ) in (a) summer
(June, July and August) and (b) winter (December, January and February), 1969-2004.
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Figure 4: Predicted annual number of temperature-induced fatalities in 2070-2099, compared
to 1969-2004, for hypothetical changes in the monthly temperature standard deviation (σT ).
Shaded light blue area indicates the 95% confidence interval, and dotted lines indicate sce-
nario with no change in the monthly temperature standard deviation. See the text for more
details.
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Figure 5: Marginal effects of temperature variables on mortality for combinations of income
and annual mean temperatures. Solid lines on axis indicates statistical significance on at
least the 5% level. See the text for more details.
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Figure 6: Marginal effect of the monthly temperature standard deviation (σT ) on mortality
for model with quadratic term on σT in column (3) in Table 6. Shaded light blue area
indicates the 95% confidence interval.
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B Tables

Table 1: Summary statistics for the temperature variables.

Monthly Annual

(1) (2) (3) (4) (5)

σT Cold days Warm days Hot days Mortality rate

National estimate 3.9 74.0 26.2 1.7 874.4

By climate region:

Central 4.5 100.2 13.9 0.2 936.9

East North Central 4.6 139.4 5.6 0.1 858.0

Northeast 4.1 106.6 8.7 0.1 934.8

Northwest 3.2 85.4 1.8 0.1 802.7

South 3.8 29.4 72.5 3.3 838.9

Southeast 3.3 30.1 53.8 0.2 908.3

Southwest 3.6 81.3 24.7 13.4 709.4

West 2.8 11.5 18.3 5.2 739.4

West North Central 4.9 142.0 9.3 0.3 901.3

Note: All averages are population-weighted. σT is the monthly standard deviation of daily mean tem-
peratures measured in ◦C. The mortality rate is number of deaths per 100,000. US climate regions are
defined as following: Central = WV, IL, KY, OH, TN, IN, MO; East North Central = IA, WI, MI, MN;
Northeast = MD, VT, CT, NJ, PA, RI, NH, DE, NY, ME, MA; Northwest = ID, OR, WA; South = OK,
AR, KS, LA, TX, MS; Southeast = GA, SC, VA, NC, FL, AL; Southwest = NM, CO, AZ, UT; West =
NV, CA; and West North Central = NE, ND, SD, MT, WY.
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Table 2: Estimates of the impact of exposure to monthly temperature variability and extreme
temperatures on monthly mortality rate.

Dependent variable:

Monthly mortality per 100,000

(1) (2) (3) (4) (5) (6)

σT 2.378** .284*** .281*** .269*** .223***

(.760) (.063) (.076) (.034) (.037)

Cold days .167*** .161***

(.014) (.013)

Warm days .094*** .089***

(.015) (.014)

Hot days .266*** .258***

(.075) (.072)

State-month FE: - Yes Yes Yes Yes Yes

Year-month FE: - - Yes Yes Yes Yes

Control Variables: - - - Yes Yes Yes

Observations 21,168 21,168 21,168 21,168 21,168 21,168

Adjusted R2 .096 .843 .911 .962 .963 .963

Note: Regressions are population-weighted. Standard errors (in parenthesis) are clustered by state.
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 3: Estimates of the impact of global warming on annual temperatures and number of
temperature-induced fatalities by 2070-2099, compared to 1969-2004.

Cold days: Warm days: Hot days: Total impact:

Panel A: Projected change in days per year

-38.4 39.6 19.9 4.8 ◦C

Panel B: Impact on number of temperature-induced fatalities per year

-26,607*** 15,168*** 22,096** 10,656

(2,197) (2,451) (6,185) (7,811)

Note: Projected changes in panel A are defined as the difference in the national average of the annual
number of cold, warm and hot days between the periods 2070-2099 and 1969-2004, with each state
weighted by its average population during the period 1969-2004. Mortality impacts in panel B are
calculated by multiplying the predicted changes in panel A with the estimates from column (6) in Table
2. Mortality predictions are given as the change in the average annual number of temperature-induced
fatalities. Standard errors (in parentheses) are clustered at the state level and take climate change
predictions and population growth as constants. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 4: Adaptation in the impact of exposure to monthly temperature variability and
extreme temperatures on monthly mortality rate, by income and mean temperature.

Dependent variable:

Monthly mortality per 100,000

(1) (2) (3)

σT .910* .307*** .904**

(.387) (.083) (.347)

Cold days .573** -.066 .289

(.207) (.039) (.192)

Warm days .764*** .320*** 1.058***

(.226) (.074) (.230)

Hot days 3.707*** .860 3.965***

(.681) (.451) (.817)

σT × log(incpc) -.077 -.068

(.042) (.041)

Cold days × log(incpc) -.045* -.038

(.022) (.021)

Warm days × log(incpc) -.072** -.075**

(.024) (.023)

Hot days × log(incpc) -.371*** -.345***

(.068) (.062)

σT × TMEAN -.010 -.009

(.008) (.008)

Cold days × TMEAN .020*** .020***

(.003) (.004)

Warm days × TMEAN -.015** -.017**

(.005) (.005)

Hot days × TMEAN -.033 -.029

(.024) (.019)

continued
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continuation of table

Observations 21,168 21,168 21,168

Adjusted R2 .947 .946 .947

Note: Regressions are not weighted. Regressions include all fixed effects and control variables specified
in equation (4). Standard errors (in parenthesis) are clustered by state. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

50



Table 5: Adaptation in the impact of exposure to monthly temperature variability and
extreme temperatures on monthly mortality rate, by residential air-conditioning.

Dependent variable:

Monthly mortality per 100,000

(1) (2)

σT .223*** .265***

(.037) (.051)

Cold days .161*** .137***

(.013) (.033)

Warm days .089*** .526***

(.014) (.087)

Hot days .258*** 1.603***

(.072) (.264)

σT × AC -.116

(.079)

Cold days × AC .040

(.045)

Warm days × AC -.533***

(.102)

Hot days × AC -1.558***

(.252)

Observations 21,168 21,168

Adjusted R2 .963 .945

Note: Regression in column (1) is weighted by population, while regression in column (2) is unweighted.
Regressions include all fixed effects and control variables specified in equation (4). Standard errors (in
parenthesis) are clustered by state. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 6: Estimates of the impact of exposure to monthly temperature variability on monthly mortality rate for
alternative measures and functional forms of monthly temperature variation.

Dependent variable:

Monthly mortality per 100,000

(1) (2) (3) (4) (5) (6) (7) (8)

σT .187*** .190*** .462*** .232*** .632***
(.037) (.036) (.116) (.067) (.096)

σT squared -.026*
(.011)

σT×negative .061
(.074)

σT×winter -.275*
(.132)

Maximum σT .172***
(.036)

Minimum σT .214***
(.034)

TMEAN max-min .057***
(.011)

Observations 21,168 21,168 21,168 21,168 10,584 21,168 21,168 21,168
Adjusted R2 .964 .964 .963 .026 .959 .963 .963 .963

Note: Regressions are population-weighted. Regressions include all fixed effects and control variables specified in equation (4). Standard
errors (in parenthesis) are clustered by state. In columns (1) and (2), exposure to extreme temperature is estimated by temperature bins
that are 1 ◦C wide from −20 ◦C to +35 ◦C, and by a fourth order polynomial in the daily mean temperature, respectively. In column
(4), the regression is executed in two steps. First, the mortality rate and temperature variables are regressed on all control variables and
fixed effects. Second, the residuals in the mortality rate are regressed on the residuals in the temperature variables, while including an
interaction with a dummy for a negative shock in σT . In column (5), the regression is executed using state-month observations only from
summer and winter months, and interacting all weather variables with a dummy for winter. Columns (6)-(8) use alternative measures for
the monthly temperature variation. See the text for more details. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 7: Estimates of the impact of exposure to monthly temperature variability and extreme
temperatures on monthly mortality rate, by age group and cause of death.

σT Cold days Warm days Hot days

Panel A: By age group

Infants .071 .174* .075 .192

(.145) (.074) (.067) (.130)

1-44 .005 -.006 .032*** .058***

(.009) (.004) (.006) (.011)

45-64 .245*** .104*** .081*** .196***

(.045) (.016) (.022) (.044)

65 + 1.494*** 1.198*** .430*** 1.692**

(.221) (.108) (.092) (.555)

Panel B: By cause of death

Infectious disease .0003 -.0001 -.0002 -.001

(.001) (.0005) (.0005) (.003)

Neoplasms .025** .005 .004 -.010

(.009) (.004) (.003) (.013)

Mental disorders .005* .001 .002* .005

(.002) (.001) (.001) (.004)

Nervous system .009*** .004*** .004* .001

(.003) (.001) (.002) (.005)

Respiratory disease .037*** .025*** .003 .002

(.009) (.004) (.003) (.008)

Cardiovascular disease .155*** .106*** .044*** .129***

(.009) (.004) (.003) (.013)

Traffic accidents .002 -.009*** .006** .017**

(.004) (.001) (.002) (.006)

Note: Regressions include all fixed effects and control variables specified in equation (4). Standard errors
(in parenthesis) are clustered by state. In panel A, the sample size is 21,168 state-month observations
and regressions are executed separately for each of the age groups. Regressions are weighted by state
population in the relevant age group. In panel B, the sample size is 17,640 state-month observations,
and regressions are executed separately for each of the all-age cause-specific mortality rates. Regressions
are weighted by total state population. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 8: Estimates of the impact of exposure to monthly temperature variability and extreme
temperatures on monthly mortality rate, by time period and for dynamic model with lagged
exposure.

σT Cold days Warm days Hot days

Panel A: By time period

1969-1980 .335*** .196*** .172*** .492***

(.069) (.019) (.035) (.118)

1981-1992 .166** .175*** .091*** .232**

(.056) (.025) (.026) (.080)

1993-2004 .151* .163*** .035 .160*

(.072) (.032) (.020) (.079)

Panel B: Dynamic model with lagged exposure

2 months .256*** .231*** .061** .158*

(.067) (.023) (.020) (.073)

3 months .227** .180*** .051* .126

(.087) (.028) (.024) (.065)

6 months .210* .099** -.031 -.129

(.094) (.035) (.033) (.088)

Note: Regressions are population-weighted. Regressions include all fixed effects and control variables
specified in equation (4). Standard errors (in parenthesis) are clustered by state. In panel A, regressions
are executed separately for each of the time periods. The sample size is 7,056 state-month observations in
each time period. In panel B, estimation is expanded with lagged exposure in the temperature variables
as specified in equation (7). Panel B reports the cumulative effect for each of the lengths of lagged
exposure, and the sample size varies between 21,119 and 20,923 state-month observations. ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001
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C Appendix

Figure 7: Predicted state level change in average annual number of temperature-induced
fatalities between the periods 2070-2099 and 1969-2004. States with a statistically significant
change in mortality on at least the 5 % level are outlined in black.
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Figure 8: Projected state level change in average annual number of (a) cold days, (b) warm
days, and (c) hot days, between the periods 2070-2099 and 1969-2004.
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